

txZMQ - ØMQ for Twisted

txZMQ allows to integrate easily ØMQ [http://zeromq.org] sockets into
Twisted event loop (reactor).

txZMQ supports both CPython and PyPy, and ØMQ library version 2.2.x or 3.2.x.

txZMQ introduces support for general 0MQ sockets by class txzmq.ZmqConnection
that can do basic event loop integration, sending-receiving messages in
non-blocking manner, scatter-gather for multipart messages.

txZMQ uses ØMQ APIs to get file descriptor that is used to signal pending
actions from ØMQ library IO thread running in separate thread. This is used in
a custom file descriptor reader, which is then added to the Twisted reactor.

From this class, one may implement the various patterns defined by ØMQ. For
example, special descendants of the txzmq.ZmqConnection class,
txzmq.ZmqPubConnection and txzmq.ZmqSubConnection, add special nice features for
PUB/SUB sockets.

Request/reply pattern is achieved via DEALER/ROUTER sockets and classes txzmq.ZmqREQConnection,
txzmq.ZmqREPConnection, which provide REQ-REP like semantics in asynchronous case.

Other socket types could be easily derived from txzmq.ZmqConnection.

Contents:

	Installation
	Requirements

	MacOS X

	Ubuntu/Debian

	Examples
	Publish-Subscribe

	Push-Pull

	API Documentation
	Factory

	Base Connection

	Publish-Subscribe

	Push-Pull

	Request-Reply and Router-Dealer

Indices and tables

	Index

	Module Index

	Search Page

Installation

Short version:

pip install txZMQ

Requirements

C libraries required:

	ØMQ library 2.2.x or 3.2.x

Python packages required:

	pyzmq >= 13

	Twisted

MacOS X

On Mac OS X with Homebrew, please run:

brew install --with-pgm zeromq

This would install ØMQ 2.2.0, for 3.2.x please run:

brew install --with-pgm --devel zeromq

Ubuntu/Debian

Install ØMQ library with headers:

apt-get install libzmq-dev

Package name could aslo be libzmq3-dev for version 3.x.

Examples

Publish-Subscribe

Here is an example of using txZMQ with publish and subscribe
(examples/push_pull.py [https://github.com/smira/txZMQ/blob/master/examples/pub_sub.py]):

#!env/bin/python

"""
Example txzmq client.

 examples/pub_sub.py --method=bind --endpoint=ipc:///tmp/sock --mode=publisher

 examples/pub_sub.py --method=connect --endpoint=ipc:///tmp/sock --mode=subscriber
"""
import os
import sys
import time
from optparse import OptionParser

from twisted.internet import reactor

rootdir = os.path.realpath(os.path.join(os.path.dirname(sys.argv[0]), '..'))
sys.path.append(rootdir)
os.chdir(rootdir)

from txzmq import ZmqEndpoint, ZmqFactory, ZmqPubConnection, ZmqSubConnection

parser = OptionParser("")
parser.add_option("-m", "--method", dest="method", help="0MQ socket connection: bind|connect")
parser.add_option("-e", "--endpoint", dest="endpoint", help="0MQ Endpoint")
parser.add_option("-M", "--mode", dest="mode", help="Mode: publisher|subscriber")
parser.set_defaults(method="connect", endpoint="epgm://eth1;239.0.5.3:10011")

(options, args) = parser.parse_args()

zf = ZmqFactory()
e = ZmqEndpoint(options.method, options.endpoint)

if options.mode == "publisher":
 s = ZmqPubConnection(zf, e)

 def publish():
 data = str(time.time())
 print "publishing %r" % data
 s.publish(data)

 reactor.callLater(1, publish)

 publish()
else:
 s = ZmqSubConnection(zf, e)
 s.subscribe("")

 def doPrint(*args):
 print "message received: %r" % (args,)

 s.gotMessage = doPrint

reactor.run()

The same example is available in the source code. You can run it from the
checkout directory with the following commands (in two different terminals):

examples/pub_sub.py --method=bind --endpoint=ipc:///tmp/sock --mode=publisher

examples/pub_sub.py --method=connect --endpoint=ipc:///tmp/sock --mode=subscriber

Push-Pull

Example for push and pull socket is available in
examples/push_pull.py [https://github.com/smira/txZMQ/blob/master/examples/push_pull.py].

#!env/bin/python

"""
Example txzmq client.

 examples/push_pull.py --method=bind --endpoint=ipc:///tmp/sock
 --mode=push

 examples/push_pull.py --method=connect --endpoint=ipc:///tmp/sock
 --mode=pull
"""
import os
import socket
import sys
import time
import zmq
from optparse import OptionParser

from twisted.internet import reactor

rootdir = os.path.realpath(os.path.join(os.path.dirname(sys.argv[0]), '..'))
sys.path.insert(0, rootdir)
os.chdir(rootdir)

from txzmq import ZmqEndpoint, ZmqFactory, ZmqPushConnection, ZmqPullConnection

parser = OptionParser("")
parser.add_option("-m", "--method", dest="method", help="0MQ socket connection: bind|connect")
parser.add_option("-e", "--endpoint", dest="endpoint", help="0MQ Endpoint")
parser.add_option("-M", "--mode", dest="mode", help="Mode: push|pull")
parser.set_defaults(method="connect", endpoint="ipc:///tmp/txzmq-pc-demo")

(options, args) = parser.parse_args()

zf = ZmqFactory()
e = ZmqEndpoint(options.method, options.endpoint)

if options.mode == "push":
 s = ZmqPushConnection(zf, e)

 def produce():
 data = [str(time.time()), socket.gethostname()]
 print "producing %r" % data
 try:
 s.push(data)
 except zmq.error.Again:
 print "Skipping, no pull consumers..."

 reactor.callLater(1, produce)

 reactor.callWhenRunning(reactor.callLater, 1, produce)
else:
 s = ZmqPullConnection(zf, e)

 def doPrint(message):
 print "consuming %r" % (message,)

 s.onPull = doPrint

reactor.run()

API Documentation

ZeroMQ integration into Twisted reactor.

Factory

All ØMQ connections should belong to some context, txZMQ wraps that into
concept of factory that tracks all connections created and wraps context.

Factory could be used as an easy way to close all connections and clean
up Twisted reactor.

	
class txzmq.ZmqFactory

	I control individual ZeroMQ connections.

Factory creates and destroys ZeroMQ context.

	Variables:	
	reactor – reference to Twisted reactor used by all the connections

	ioThreads (int) – number of IO threads ZeroMQ will be using for this context

	lingerPeriod (int) – number of milliseconds to block when closing socket
(terminating context), when there are some messages pending to be sent

	connections (set) – set of instanciated ZmqConnection

	context – ZeroMQ context

	
__init__(self)

	Constructor.

Create ZeroMQ context.

	
shutdown()

	Shutdown factory.

This is shutting down all created connections
and terminating ZeroMQ context. Also cleans up
Twisted reactor.

	
registerForShutdown()

	Register factory to be automatically shut down
on reactor shutdown.

It is recommended that this method is called on any
created factory.

Base Connection

ZmqConnection isn’t supposed to be used explicitly, it is base
for different socket types.

	
class txzmq.ZmqEndpointType

	Endpoint could be “bound” or “connected”.

	
bind = 'bind'

	Bind, listen for connection.

	
connect = 'connect'

	Connect to another endpoint.

	
class txzmq.ZmqEndpoint

	ZeroMQ endpoint used when connecting or listening for connections.

Consists of two members: type and address.

	Variables:	
	type – Could be either ZmqEndpointType.bind or
ZmqEndpointType.connect.

	address (str) – ZeroMQ address of endpoint, could be IP address,
filename, see ZeroMQ docs for more details.

	
class txzmq.ZmqConnection(factory, endpoint=None, identity=None)

	Connection through ZeroMQ, wraps up ZeroMQ socket.

This class isn’t supposed to be used directly, instead use one of the
descendants like ZmqPushConnection.

ZmqConnection implements glue between ZeroMQ and Twisted
reactor: putting polling ZeroMQ file descriptor into reactor,
processing events, reading data from socket.

	Variables:	
	socketType – socket type, from ZeroMQ

	allowLoopbackMulticast (bool) – is loopback multicast allowed?

	multicastRate (int) – maximum allowed multicast rate, kbps

	highWaterMark (int) – hard limit on the maximum number of outstanding
messages 0MQ shall queue in memory for any single peer

	tcpKeepalive (int) – if set to 1, enable TCP keepalive, otherwise leave
it as default

	tcpKeepaliveCount (int) – override TCP_KEEPCNT socket option
(where supported by OS)

	tcpKeepaliveIdle (int) – override TCP_KEEPCNT(or TCP_KEEPALIVE
on some OS) socket option(where supported by OS).

	tcpKeepaliveInterval (int) – override TCP_KEEPINTVL socket
option(where supported by OS)

	reconnectInterval (int) – set reconnection interval

	reconnectIntervalMax (int) – set maximum reconnection interval

	factory (ZmqFactory) – ZeroMQ Twisted factory reference

	socket (zmq.Socket) – ZeroMQ Socket

	endpoints (list of ZmqEndpoint) – ZeroMQ addresses for connect/bind

	fd (int) – file descriptor of zmq mailbox

	queue (deque) – output message queue

	
__init__(self, factory, endpoint=None, identity=None)

	Constructor.

One endpoint is passed to the constructor, more could be added
via call to addEndpoints().

	Parameters:	
	factory (ZmqFactory) – ZeroMQ Twisted factory

	endpoint (ZmqEndpoint) – ZeroMQ address for connect/bind

	identity (str) – socket identity (ZeroMQ), don’t set unless you know
how it works

	
addEndpoints(endpoints)

	Add more connection endpoints.

Connection may have many endpoints, mixing ZeroMQ protocols
(TCP, IPC, ...) and types (connect or bind).

	Parameters:	endpoints (list of ZmqEndpoint) – list of endpoints to add

	
shutdown()

	Shutdown (close) connection and ZeroMQ socket.

	
fileno()

	Implementation of IFileDescriptor [http://twistedmatrix.com/documents/current/api/twisted.internet.interfaces.IFileDescriptor.html].

Returns ZeroMQ polling file descriptor.

	Returns:	The platform-specified representation of a file descriptor
number.

	
connectionLost(reason)

	Called when the connection was lost.

Implementation of IFileDescriptor [http://twistedmatrix.com/documents/current/api/twisted.internet.interfaces.IFileDescriptor.html].

This is called when the connection on a selectable object has been
lost. It will be called whether the connection was closed explicitly,
an exception occurred in an event handler, or the other end of the
connection closed it first.

	
doRead()

	Some data is available for reading on ZeroMQ descriptor.

ZeroMQ is signalling that we should process some events,
we’re starting to receive incoming messages.

Implementation of IReadDescriptor [http://twistedmatrix.com/documents/current/api/twisted.internet.interfaces.IReadDescriptor.html].

	
logPrefix()

	Implementation of ILoggingContext [http://twistedmatrix.com/documents/current/api/twisted.internet.interfaces.ILoggingContext.html].

	Returns:	Prefix used during log formatting to indicate context.

	Return type:	str

	
send(message)

	Send message via ZeroMQ socket.

Sending is performed directly to ZeroMQ without queueing. If HWM is
reached on ZeroMQ side, sending operation is aborted with exception
from ZeroMQ (EAGAIN).

After writing read is scheduled as ZeroMQ may not signal incoming
messages after we touched socket with write request.

	Parameters:	message (str or list of str) – message data, could be either list of str (multipart
message) or just str

	
messageReceived(message)

	Called when complete message is received.

Not implemented in ZmqConnection, should be overridden to
handle incoming messages.

	Parameters:	message – message data

Publish-Subscribe

For information on publish-subscribe in ØMQ, please read either
reference [http://api.zeromq.org/3-2:zmq-socket]
or guide [http://zguide.zeromq.org/page:all] (look for publish-subscribe).

Note

These classes use PUB and SUB sockets from ØMQ. Special framing is implemented
to support sending tag: tag and message are separated by zero byte and sent over
as single message. This is related to the way PUB-SUB works with PGM (UDP multicast):
multipart messages are sent as multiple datagrams and they get mixed together if
several publishers exist in the same broadcast domain.

	
class txzmq.ZmqPubConnection(factory, endpoint=None, identity=None)

	Bases: txzmq.connection.ZmqConnection

Publishing in broadcast manner.

	
publish(message, tag='')

	Publish message with specified tag.

	Parameters:	
	message (str) – message data

	tag (str) – message tag

	
class txzmq.ZmqSubConnection(factory, endpoint=None, identity=None)

	Bases: txzmq.connection.ZmqConnection

Subscribing to messages published by publishers.

Subclass this class and implement gotMessage() to handle incoming
messages.

	
subscribe(tag)

	Subscribe to messages with specified tag (prefix).

Function may be called several times.

	Parameters:	tag (str) – message tag

	
unsubscribe(tag)

	Unsubscribe from messages with specified tag (prefix).

Function may be called several times.

	Parameters:	tag (str) – message tag

	
messageReceived(message)

	Overridden from ZmqConnection to process
and unframe incoming messages.

All parsed messages are passed to gotMessage().

	Parameters:	message – message data

	
gotMessage(message, tag)

	Called on incoming message recevied by subscriber.

Should be overridden to handle incoming messages.

	Parameters:	
	message – message data

	tag – message tag

Push-Pull

For information on push and pull sockets in ØMQ, please read either
reference [http://api.zeromq.org/3-2:zmq-socket]
or guide [http://zguide.zeromq.org/page:all] (look for pull or push).

	
class txzmq.ZmqPushConnection(factory, endpoint=None, identity=None)

	Bases: txzmq.connection.ZmqConnection

Pushing messages to the socket.

Wrapper around ZeroMQ PUSH socket.

	
push(message)

	Push a message L{message}.

	Parameters:	message (str) – message data

	
class txzmq.ZmqPullConnection(factory, endpoint=None, identity=None)

	Bases: txzmq.connection.ZmqConnection

Pull messages from a socket.

Wrapper around ZeroMQ PULL socket.

Subclass and override onPull().

	
messageReceived(message)

	Called on incoming message from ZeroMQ.

	Parameters:	message – message data

	
onPull(message)

	Called on incoming message received by puller.

	Parameters:	message – message data

Request-Reply and Router-Dealer

For information on these socket types in ØMQ, please read either
reference [http://api.zeromq.org/3-2:zmq-socket]
or guide [http://zguide.zeromq.org/page:all] (look for router/dealer and request/reply).

	
class txzmq.ZmqREQConnection(*args, **kwargs)

	Bases: txzmq.connection.ZmqConnection

A Request ZeroMQ connection.

This is implemented with an underlying DEALER socket, even though
semantics are closer to REQ socket.

Socket mimics request-reply behavior by sending each message with unique
uuid and recording Deferred associated with the message. When reply comes,
it uses that Deferred to pass response back to the caller.

	Variables:	defaultRequestTimeout – default timeout for requests, disabled
by default (seconds)

	
sendMsg(*messageParts, **kwargs)

	Send request and deliver response back when available.

	Parameters:	
	messageParts (tuple) – message data

	timeout (float) – as keyword argument, timeout on request

	Returns:	Deferred that will fire when response comes back

	
messageReceived(message)

	Called on incoming message from ZeroMQ.

Dispatches message to back to the requestor.

	Parameters:	message – message data

	
class txzmq.ZmqREPConnection(*args, **kwargs)

	Bases: txzmq.connection.ZmqConnection

A Reply ZeroMQ connection.

This is implemented with an underlying ROUTER socket, but the semantics
are close to REP socket.

	
reply(messageId, *messageParts)

	Send reply to request with specified messageId.

	Parameters:	
	messageId (str) – message uuid

	messageParts (list) – message data

	
messageReceived(message)

	Called on incoming message from ZeroMQ.

	Parameters:	message – message data

	
gotMessage(messageId, *messageParts)

	Called on incoming request.

Override this method in subclass and reply using
reply() using the same messageId.

	Parameters:	
	messageId (str) – message uuid

	messageParts – message data

	
class txzmq.ZmqRouterConnection(factory, endpoint=None, identity=None)

	Bases: txzmq.router_dealer.ZmqBase

Raw ZeroMQ ROUTER connection.

	
class txzmq.ZmqDealerConnection(factory, endpoint=None, identity=None)

	Bases: txzmq.router_dealer.ZmqBase

Raw ZeroMQ DEALER connection.

 Python Module Index

 t

 		 	

 		
 t	

 	
 	
 txzmq	

Index

 _
 | A
 | B
 | C
 | D
 | F
 | G
 | L
 | M
 | O
 | P
 | R
 | S
 | T
 | U
 | Z

_

 	
 	__init__() (txzmq.ZmqConnection method)

 	(txzmq.ZmqFactory method)

A

 	
 	addEndpoints() (txzmq.ZmqConnection method)

B

 	
 	bind (txzmq.ZmqEndpointType attribute)

C

 	
 	connect (txzmq.ZmqEndpointType attribute)

 	
 	connectionLost() (txzmq.ZmqConnection method)

D

 	
 	doRead() (txzmq.ZmqConnection method)

F

 	
 	fileno() (txzmq.ZmqConnection method)

G

 	
 	gotMessage() (txzmq.ZmqREPConnection method)

 	(txzmq.ZmqSubConnection method)

L

 	
 	logPrefix() (txzmq.ZmqConnection method)

M

 	
 	messageReceived() (txzmq.ZmqConnection method)

 	(txzmq.ZmqPullConnection method)

 	(txzmq.ZmqREPConnection method)

 	(txzmq.ZmqREQConnection method)

 	(txzmq.ZmqSubConnection method)

O

 	
 	onPull() (txzmq.ZmqPullConnection method)

P

 	
 	publish() (txzmq.ZmqPubConnection method)

 	
 	push() (txzmq.ZmqPushConnection method)

R

 	
 	registerForShutdown() (txzmq.ZmqFactory method)

 	
 	reply() (txzmq.ZmqREPConnection method)

S

 	
 	send() (txzmq.ZmqConnection method)

 	sendMsg() (txzmq.ZmqREQConnection method)

 	
 	shutdown() (txzmq.ZmqConnection method)

 	(txzmq.ZmqFactory method)

 	subscribe() (txzmq.ZmqSubConnection method)

T

 	
 	txzmq (module)

U

 	
 	unsubscribe() (txzmq.ZmqSubConnection method)

Z

 	
 	ZmqConnection (class in txzmq)

 	ZmqDealerConnection (class in txzmq)

 	ZmqEndpoint (class in txzmq)

 	ZmqEndpointType (class in txzmq)

 	ZmqFactory (class in txzmq)

 	ZmqPubConnection (class in txzmq)

 	
 	ZmqPullConnection (class in txzmq)

 	ZmqPushConnection (class in txzmq)

 	ZmqREPConnection (class in txzmq)

 	ZmqREQConnection (class in txzmq)

 	ZmqRouterConnection (class in txzmq)

 	ZmqSubConnection (class in txzmq)

 nav.xhtml

 Table of Contents

 		txZMQ - ØMQ for Twisted

 		Installation

 		Requirements

 		MacOS X

 		Ubuntu/Debian

 		Examples

 		Publish-Subscribe

 		Push-Pull

 		API Documentation

 		Factory

 		Base Connection

 		Publish-Subscribe

 		Push-Pull

 		Request-Reply and Router-Dealer

_static/file.png

_static/minus.png

_static/comment.png

_static/down-pressed.png

_static/down.png

_static/plus.png

_static/ajax-loader.gif

_static/up.png

_static/up-pressed.png

_static/comment-close.png

_static/comment-bright.png

